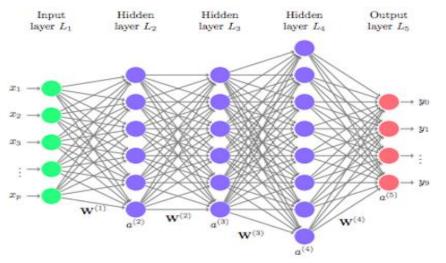


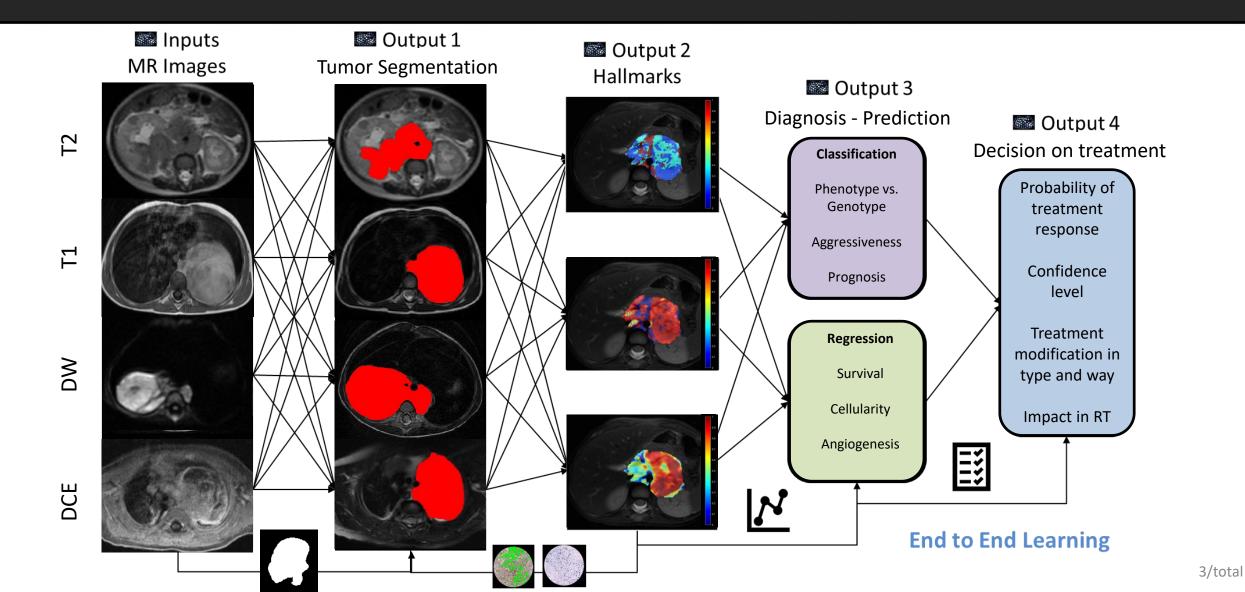
Deep learning NMR and outcomes prediction


Leonor Cerdá Alberich

La Fe Health Research Institute (Valencia)

16.06.2022

- Input: MR images
- **Output 1:** Tumor segmentation


Deep learning NMR

- Output 2: Hallmarks
- **Output 3:** Diagnosis Prediction
- **Output 4:** Decision on treatment

Virtual Biopsy in Oncology

Source Images

NLMF+N4

Image Preparation

Noise filtering and field

inhomogeneity correction

Signal normalization and

resampling

original

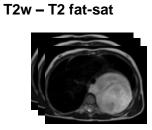
Z-SCORE

egistration T2w - DWI

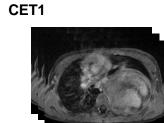
o i 2 Overall intensity value

Image Registration

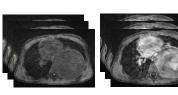
Original


Image Processing

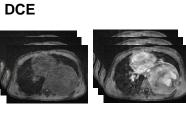
Data Integration

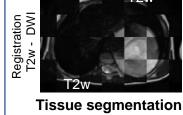

Image processing pipelin

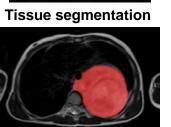
Predictions

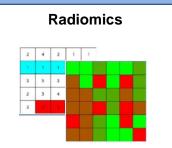

Prognosis models

MORPHOLOGY

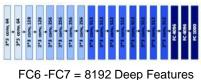


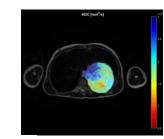

PERFUSION

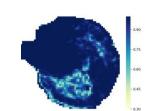


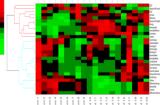


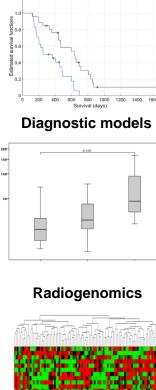
DIFFUSION

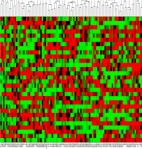




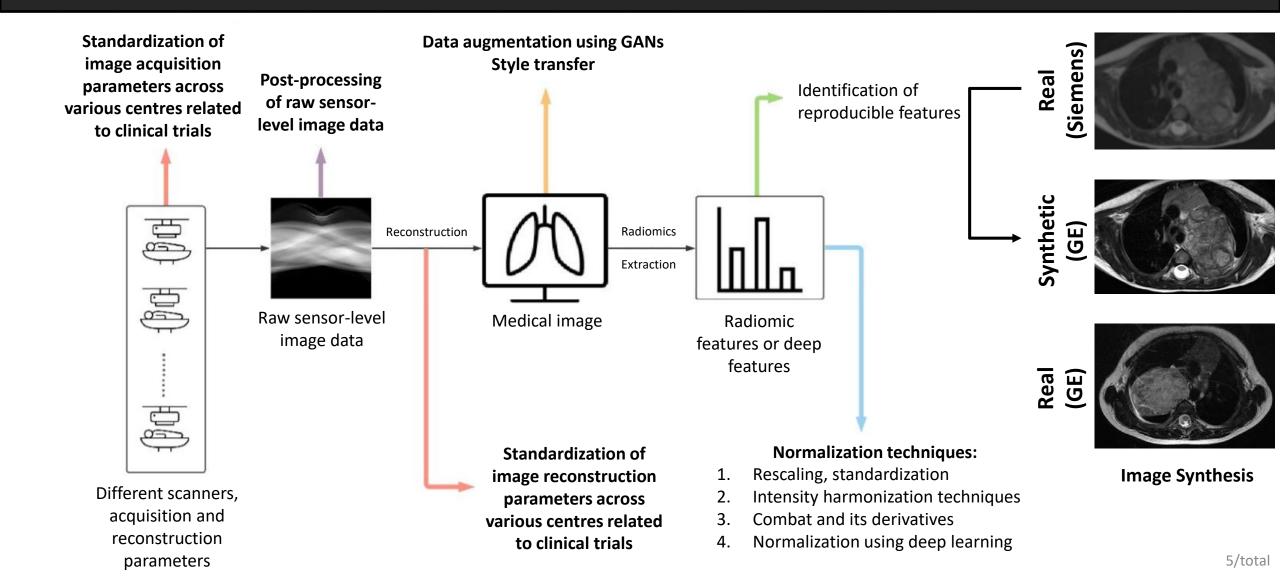

Deep Features


Dynamic signal


Tumor heterogeneity



LDL Cholesterol Calc	70		mg/dL
Effective Septemb interval for LDL changing to:	cholesterol C	the refere alc will b	nce e
changing cor	0 - 19 y 20 - 24 y > 24 y	ears	0 - 10 0 - 11 0 - 9
Thyroid Panel With TSH TSH	0.722		uIU/mL
Thyroxine (T4)	4.7		ug/dL
T3 Uptake Free Thyroxine Index	40	High	,
Testosterone, Free/Tot Equilib	2.5		
Testosterone, Serum	>1500	High	ng/dL
Testosterone, Free	>69.75 Hi		ng/dL
+ Free Testosterone	4.65	High	
FSH and LH			
LH	0.1	Low	mIU/mL
FSE	<0.2	Low	mIter
Dihydrotestosterone			
Dihydrotestosterone Reference Range:	260	High	
Adult Male: 30 - 85			
		6	
Geno	mics	5	


Pathology

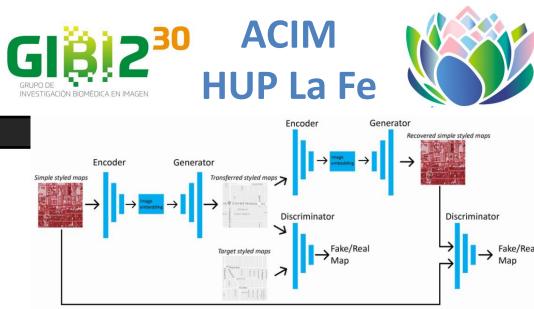
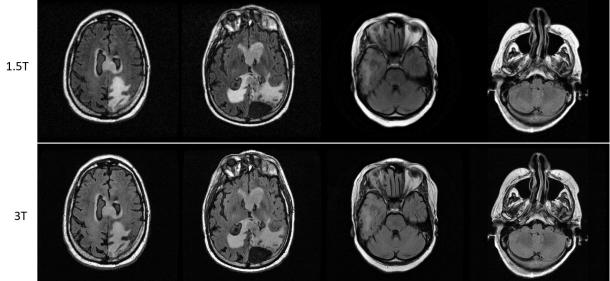


Image harmonization

The images were harmonised by the CycleGAN-based module to achieve a better resolution and low noises

Effect of image harmonization on computational models

A simple ResNet50 classifier is trained on the TCGA brain tumor data set to classify whether the case belongs to LGG or GBM:


Subtypes	1.5T (N)	3T (N)
LGG	51	48
GBM	256	138

Then, a harmonization module is trained to harmonize the 1.5T cases to the 3T cases.

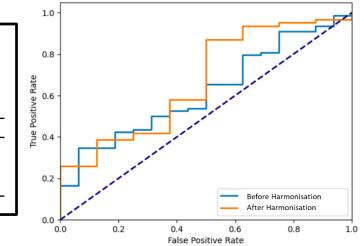
The effectiveness is assessed by comparing the performance of the classifier on with/without harmonized test datasets.

networks (GAN Visualization results of Cycle-GAN for MRI image harmonization

Generative adversarial

computational

after


Accuracy

0.723

0.857

and

Receiver operating characteristic

After

of

before

AUC

0.621

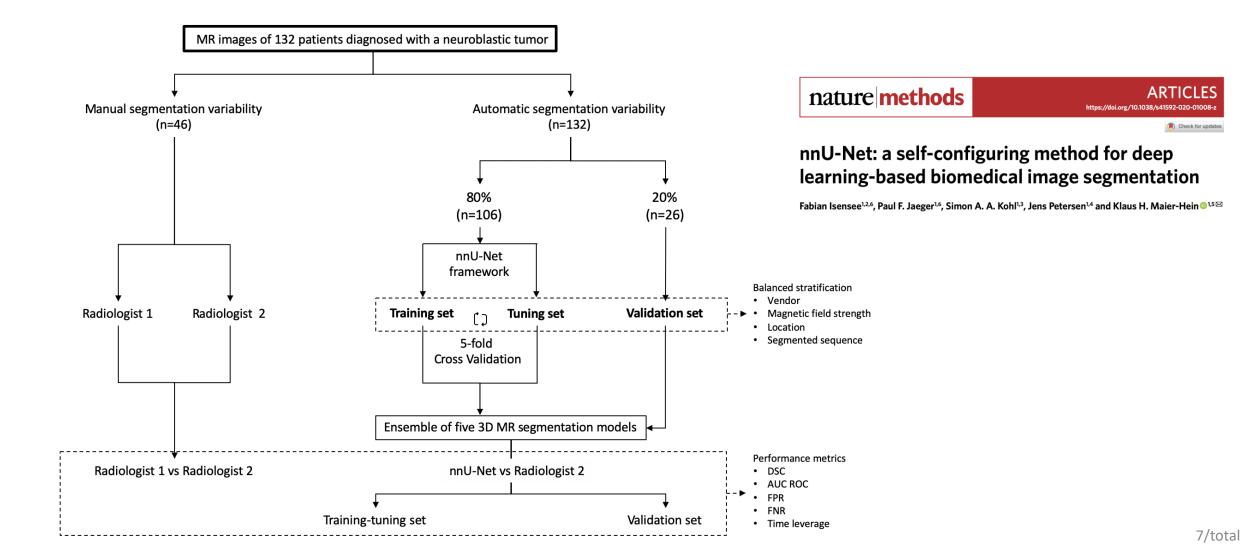
0.671

Performance

harmonisation

Without

harmonisation


Harmonised

modules

Before

Automatic segmentation

Automatic vs manual

segmentation variability

0.137

0.082

0.146

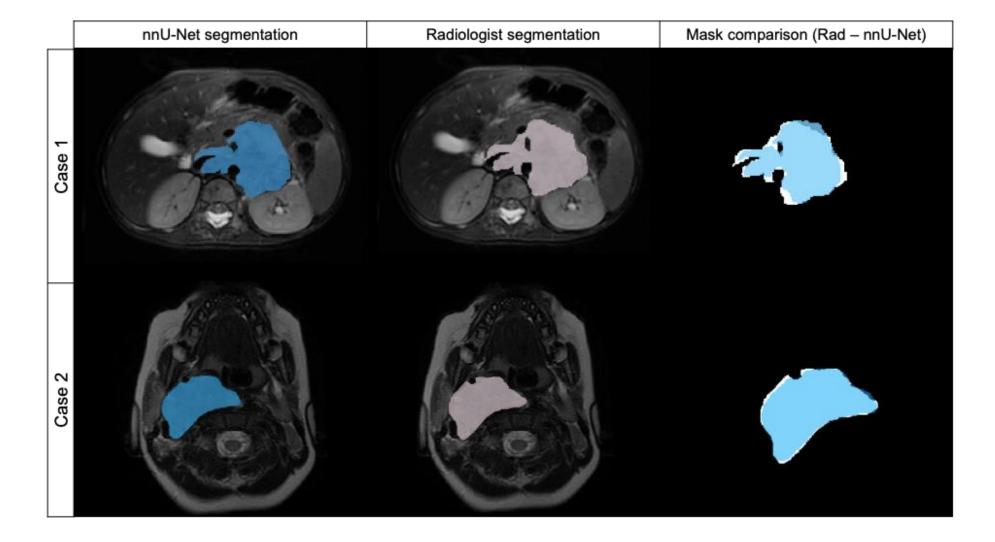
0.075

SD

	rver manual se variability (n=4	•	Autom	atic segmentatio (n=106)	on variability
	DSC	AUC ROC		DSC	AUC ROC
Median	0.969	0.998	Median	0.965	0.981
IQR	0.032	0.004	IQR	0.018	0.010
Mean	0.934	0.983	Mean	0.931	0.964

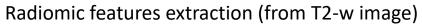
MR images segmentation variability of neuroblastic tumors is observed to be compatible between radiologists and the state-of-the-art deep learning architecture nnU-Net.

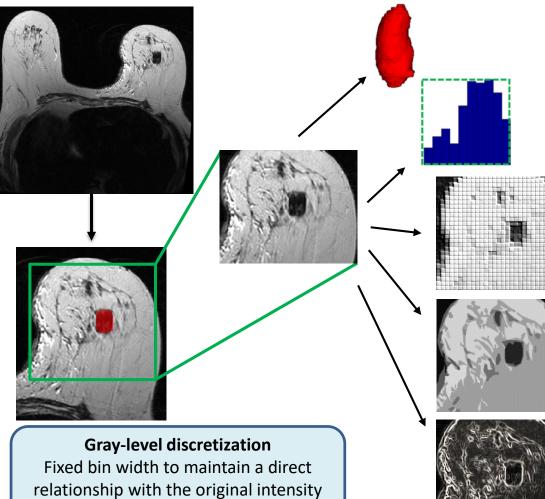
SD


$FPR = \frac{FP}{TP + FN}$ Radiologist 1 manual Radiologist 2 manual FP TP FN segmentation segmentation $FNR = \frac{FN}{TP + FN} = 1 - Sensitivity or Recall$ or "Ground truth" Automatic segmentation (TP + FN)(FP + TP)**Inter-observer manual segmentation variability** Automatic segmentation variability (n=46) (n=106) **1-FNR 1-FPR** 1-FNR 1-FPR Median 0.968 0.963 Median 0.939 0.998 0.015 0.021 IQR 0.008 IQR 0.063 0.943 0.929 Mean Mean 0.895 0.968 SD 0.132 0.164 SD 0.154 0.149

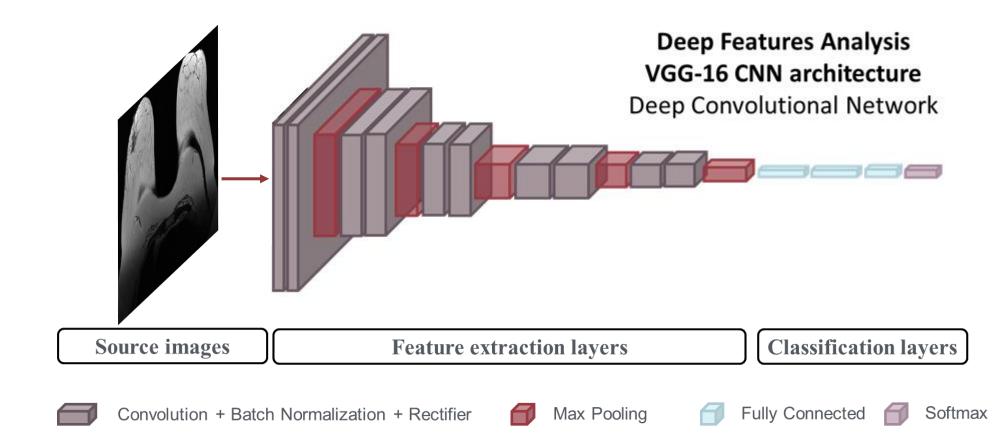
The automatic segmentation model achieves a better performance regarding the FPR: great advantage for the posterior extraction of quantitative imaging features.

Directional metrics


Visualization of results



scale

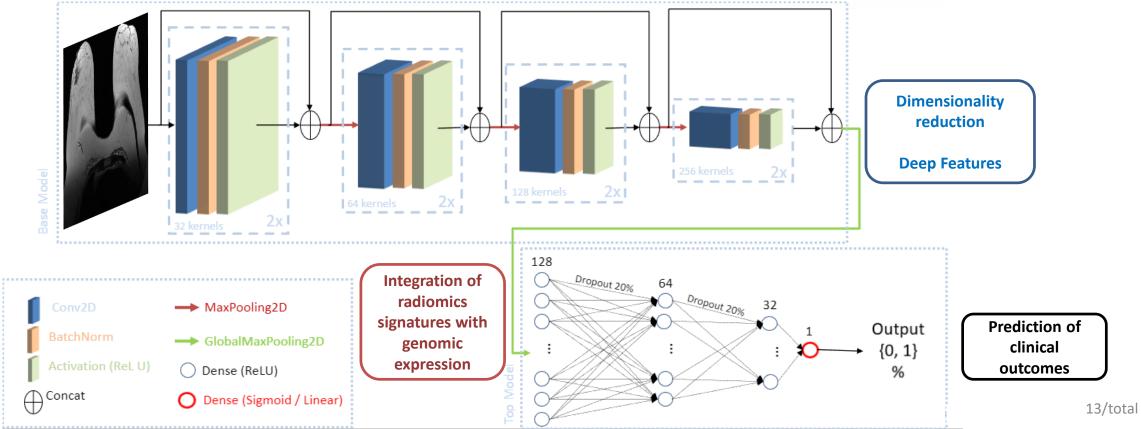


 Shape Volume Elongation Sphericity Surface area Surface-Volume Ratio Flatness 	Intensity• Minimum• SD• Maximum• RMS• Mean• Skewness• Variance• Energy• Kurtosis• Entropy• Median• Uniformity
 Contrast Joint entropy Homographity Sum va 	rrelation • Inverse variance erage • Difference entropy
 Gray Level Run Length Matrix (G Small area emphasis Large area emphasis Gray level non-uniformity Size zone non-uniformity Zone percentage 	 Gray level variance Zone variance Zone entropy Low / High gray level zone emphasis
 Gray Level Size Zone Matrix (GLS Short run emphasis Long run emphasis Gray level non-uniformity Run length non-uniformity Run percentage 	 SZM) Run entropy Run variance Low gray level run emphasis High gray level run emphasis

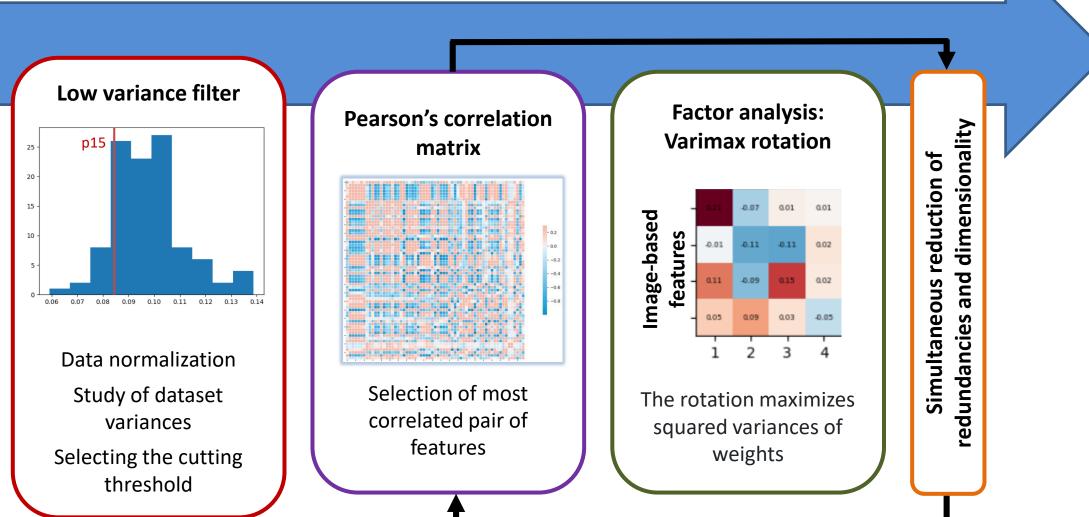
- Andrews

Radiomics

Feature extraction and "end-to-end" Neural Networks



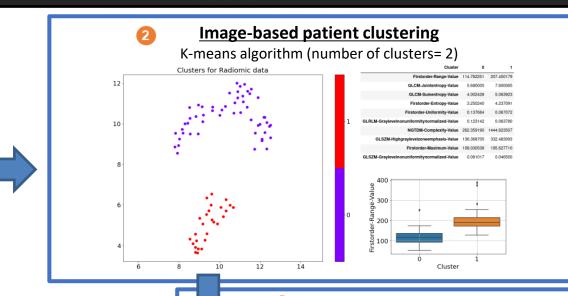
- AI data generation: quantitative data related to relevant clinical outcomes.
- Segmentation, quantification and automatic and simultaneous prediction of final clinical endpoints with end-to-end AI methods.


Automation of the

virtual biopsy process

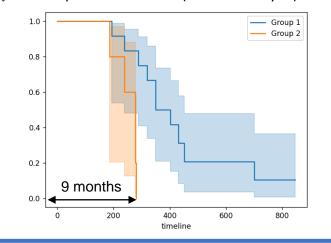
• Integration of -omics data into the automated flow for decision making

Radiomic signatures


Outcomes prediction

1	Image	e-bas	ed si	gnatu	<u>ire</u>				
	0	1	2	3	4	5	6	7	8
original_glszm_ZoneVariance	0,3168773	0,1107472	0,0047431	0,0785443	0,0544485	0,0033883	0,032935	0,0336947	0,0021655
original_glszm_ZoneEntropy	0,2841487	0,0748367	0,1066504	0,041949	0,0120424	0,034301	0,0129585	0,0448946	0,0155192
original_ngtdm_Coarseness	0,251275	0,0763736	0,0358225	0,0673503	0,0098992	0,0068309	0,0047079	0,0731629	0,0097211
original_glszm_SmallAreaLowGrayLevelEmphasis	0,1776158	0,1954106	0,0298203	0,0763656	0,0477685	0,0026891	0,0235421	0,0047143	0,0120149
original_gldm_SmallDependenceEmphasis	0,0608665	0,2613982	0,0066042	0,0861982	0,030651	0,0024319	0,038865	0,0271704	0,0054516
original_gldm_LargeDependenceLowGrayLevelEmphasis	0,0417111	0,1860703	0,0276523	0,0507579	0,0542926	0,0301993	0,0398511	0,03571	0,0813643
original_glszm_HighGrayLevelZoneEmphasis	0,029904	0,2030425	0,0736933	0,0458689	0,0350695	0,0418297	0,0109821	0,0470235	0,0235679
original_gldm_DependenceNonUniformityNormalized	0,0273201	0,1591627	0,1287543	0,120316	0,0488221	0,0102605	0,0102596	0,0077138	0,0538781
original_firstorder_90Percentile	0,013751	0,2325216	0,020326	0,047377	0,0485453	0,0016606	0,0332317	0,0335815	0,0801144
original_firstorder_10Percentile	0,0124423	0,1323581	0,0797566	0,1211414	0,0633804	0,0003395	0,0489732	0,0081444	0,0868927
original_glcm_lmc1	0,0838359	0,1366301	0,1908377	0,0101026	0,0348266	0,0118145	0,0424073	0,0404133	0,0453294
original_glszm_SmallAreaEmphasis	0,0811051	0,1334598	0,1951023	0,0476971	0,0788423	0,0128489	0,0245588	0,0308119	0,0488153
original_glcm_lmc2	0,0780991	0,0069744	0,3051391	0,0071675	8,964E-05	0,0080682	0,0166093	0,0186514	0,0161352
original_glszm_GrayLevelNonUniformityNormalized	0,0717462	0,1271152	0,1899693	0,0047437	0,0394485	0,0007662	0,0362324	0,0245583	0,040289
original_glrlm_LongRunHighGrayLevelEmphasis	0,0488823	0,0856949	0,148322	0,0699018	0,0165139	0,0962726	0,016844	0,0230143	0,0285499
original_firstorder_Skewness	0,0481609	0,0291653	0,2108941	0,0330763	0,109092	0,0532184	0,0122485	0,0255769	0,0173831
original_gldm_SmallDependenceLowGrayLevelEmphasis	0,1376032	0,0284354	0,0388136	0,21191	0,0445079	0,0551639	0,0037854	0,0561831	0,065789
original_firstorder_TotalEnergy	0,1352088	0,0992226	0,0456963	0,1571289	0,0079631	0,0157465	0,0514724	0,0557969	0,0399127
original_gldm_LargeDependenceHighGrayLevelEmphasis	0,0629767	0,0322075	0,0158326	0,1905385	0,0640253	0,04166	0,0079303	0,0215461	0,0204211
original_shape_Elongation	0,054952	0,0216313	0,0313968	0,2275495	0,0117821	0,0708921	0,030483	0,038749	0,000697
original_shape_SurfaceVolumeRatio	0,0489144	0,0140705	0,0274847	0,2755079	0,0823871	0,0517045	0,0251206	0,0247302	0,0111615
original_shape_Flatness	0,0360608	0,0300132	0,002459	0,2094805	0,0075494	0,0150138	0,1082775	0,0171949	0,0350852
original_ngtdm_Strength	0,1273555	0,0014146	0,11941	0,0278437	0,2078517	0,0342684	0,0093461	0,0682568	0,0245715
original_firstorder_Kurtosis	0,034321	0,0488138	0,0159132	0,0477636	0,2721334	0,0136178	0,0023561	0,0264075	0,0081658
original_firstorder_Range	0,0115631	0,1069591	0,137758	0,0077579	0,192793	0,0131431	0,0165648	0,0881134	0,0152001
Kurtosis	0,0266759	0,0157758	0,0186937	0,023053	0,0212067	0,3208505	0,0117228	0,0093292	0,0234382
Std	0,0449643	0,0631879	0,0134729	0,0094275	0,0156489	0,0293623	0,2376475	0,0106654	0,0230907
original_glszm_SizeZoneNonUniformity	0,0812644	0,1281397	0,0833117	0,0474429	0,0431094	0,0324309	0,012616	0,2089814	0,0032956
original_firstorder_Minimum	0,040878	0,0086259	0,0581108	0,0440437	0,0403021	0,0906878	0,0363119	0,0018024	0,2117415

Conclusions


Image-based signatures combined with data-٠ driven unsupervised learning techniques can a potential methodology for the be classification of DIPG patients in terms of their overall survival.

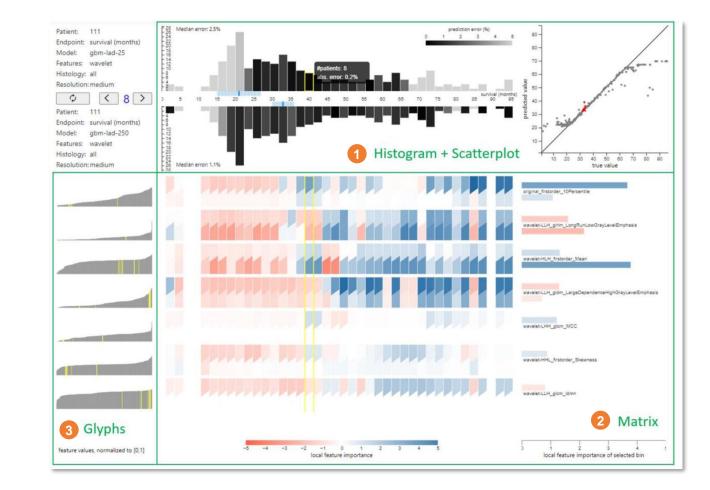
Mean (days)	IQR (days)
252	40
415	86

3

Overall survival Kaplan-Meier Curve (Survival Analysis)

15/total

outcome predictions

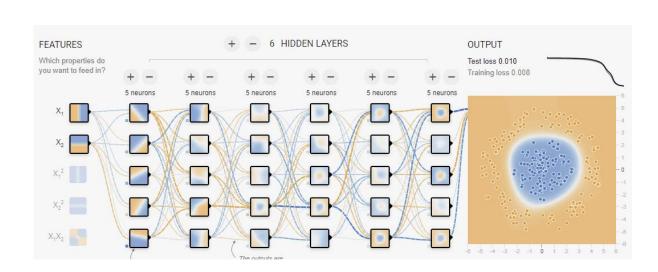

Visual analysis of

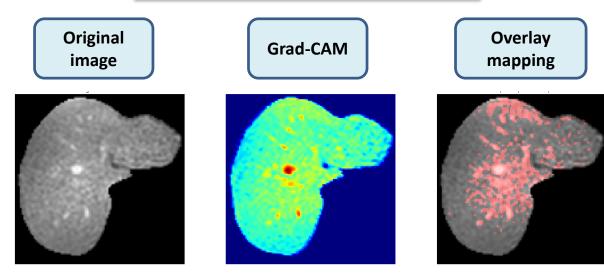
Key Aspects

- Model to model comparison
- Confidence of each models predictions and its relevant features

Visualization

- Patient to Patient / Cohort comparison
- Comparative view of real/predicted outcomes
 - Density distribution of clinical endpoints with its corresponding probability error (per bin)
 - 2. Feature Explainability (Shap value)
 - 3. Linked glyph preview feature distribution

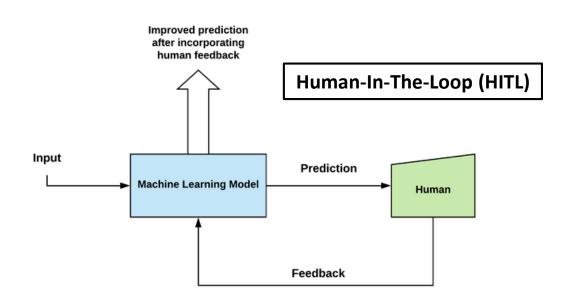


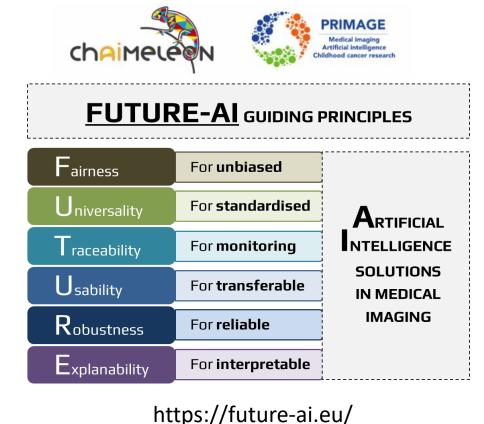


Al explicability and interpretability

Analysis per neuron

Gradient-weighted Class Activation Mapping (Grad-CAM)




Convolutional Neural Network

Neural Network

- Adoption of AI solutions in routine clinical practice
- Continuous and Iterative Learning
- Lifetime adaptive monitoring in the real world
- Improved accuracy in treatment decision

Implementation

in clinical practice

Prof. Dr. Luis Martí Bonmatí

Biomedical Imaging Research Group (La Fe Health Research Institute)

Leonor Cerdá Alberich | leonor_cerda@iislafe.es

NK YOU